
PHYSICAL REVIEW E DECEMBER 1998VOLUME 58, NUMBER 6
Solitons in highly excited matter: Dissipative-thermodynamic and supersonic effects

Marcus V. Mesquita,* Áurea R. Vasconcellos, and Roberto Luzzi
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas, Unicamp,† 13083-970 Campinas, Sa˜o Paulo, Brazil

~Received 6 August 1998!

Solitary waves — arising out of nonlinearity-induced coherence of optical and acoustical vibrational modes
in dissipative open systems~polymers and bulk matter! — are described in terms of a statistical thermody-
namics based on a nonequilibrium ensemble formalism. The undistorted progressive wave is coupled to the
normal vibrations, and three relevant phenomena follow in sufficiently away-from-equilibrium conditions:~i!
A large increase in the populations of the normal modes lowest in frequency,~ii ! accompanied by a large
increase of the solitary-wave lifetime, and~iii ! emergence of a Cherenkov-like effect, consisting in a large
emission of phonons in privileged directions, when the velocity of propagation of the soliton is larger than the
group velocity of the normal vibrations. Comparison with experiments is presented, which points out to the
corroboration of the theory.@S1063-651X~98!00412-7#

PACS number~s!: 63.70.1h, 05.70.Ln, 63.20.Pw, 87.22.2q
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I. INTRODUCTION

Solitary waves are a particular kind of excitation in co
densed matter, which nowadays are evidenced as ubiqu
and of large relevance in science and technology. Their
as a new concept in applied science was already empha
by Scottet al. in 1973@1#, who discussed the case of seve
wave systems where the phenomenon may arise. Rece
solitons have been shown to play a very important role
three significant areas: conducting polymers@2,3#, fiber op-
tics in communication engineering@4,5#, and as conveyors o
energy in biological and organic polymers@6–8#.

We consider here solitary waves arising out of vibron
modes, both optical and acoustical, when in the presenc
external pumping sources driving the open system arbitra
away from equilibrium. We evidence the possibility of th
emergence of a particular complex behavior brought ab
by the nonlinearities present in the kinetic equations wh
govern the evolution of the nonequilibrium~dissipative!
macroscopic state of the system. For that purpose we re
to the so-called informational statistical thermodynam
~IST for short@9#, and see, for example, Refs.@10–14#!. IST
is based on a particular nonequilibrium ensemble formali
namely, the nonequilibrium statistical operator meth
~NESOM; see, for example, Refs.@15–17#!, and Zubarev’s
approach is by far the most concise, soundly based, an
quite practical one@16,17#. Besides providing microscopi
foundations to IST, Zubarev’s NESOM yields a nonline
quantum kinetic theory of a large scope@16–22#, the one we
used to derive the results we report in what follows.

II. FRÖ HLICH CONDENSATION
AND SCHRÖDINGER-DAVYDOV SOLITON

Let us consider a system which can sustain longitud
vibrations, optical and acoustical~e.g., polar semiconductors
polymers, and biopolymers, etc.!, with, say, a frequency dis
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persion relationvqW ; qW is a wave vector in reciprocal spac
running over the Brillouin zone. The vibronic system
taken to be in contact with a thermal bath, modeled a
continuum of acousticlike vibrations, with frequency dispe
sion relationVpW5sBupW u and a cutoff Debye frequencyVD .
System and bath interact via an anharmonic potential,
the whole Hamiltonian is taken as

H5H01HI5H0S1H0B1HI , ~1!

where

H0S5(
qW

\vqW~aqW
†
aqW1 1

2 !, ~2a!

H0B5(
pW

\VpW~bpW
†
bpW1 1

2 !, ~2b!

HI5(
qW

ZqWwqWaqW
†
1(

qW 1pW
VqW 1pW

~1! aqW 1
bpWbqW 11pW

†

1(
qW 1pW

VqW 1pW
~1! aqW 1

bpW
†
b2qW 11pW1(

qW 1pW
VqW 1pW

~1! aqW 1
bpWb2qW 12pW

1(
qW 1pW

VqW 1pW
~1! aqW 1

bpW
†
bqW 12pW

†
1 (

qW 1qW 2

VqW 1qW 2

~2! aqW 1
aqW 2

bqW 11qW 2

†

1 (
qW 1qW 2

VqW 1qW 2

~2! aqW 1
aqW 2

b2qW 12qW 2
1 (

qW 1qW 2

VqW 1qW 2

~2! aqW 1

†
aqW 2

bqW 12qW 2

1 (
qW 1qW 2

VqW 1qW 2

~2! aqW 1
aqW 2

†
bqW 12qW 2

†
1H.c. ~2c!

It consists of the energy of the free system and bath,H0S
andH0B , respectively, and inHI are present the interactio
of the system with an external source~a mechanism for ex-
citation which pumps energy on the system!, which is the
first term on the right, and the anharmonic interaction co
posed of several contributions, namely those associated
three-particle~phonons! collisions involving one of the sys
7913 © 1998 The American Physical Society
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7914 PRE 58MESQUITA, VASCONCELLOS, AND LUZZI
tem and two of the bath~we call VqW qW 8
(1) the corresponding

matrix element! and two of the system and one of the ba
~we call VqW qW 8

(2) the associated matrix element!. Moreover,aqW

(aqW
†) andbpW (bpW

†) are, as usual, annihilation~creation! opera-
tors of, respectively, normal-mode vibrations in the syst
and bath andwqW (wqW

†) of excitations in the source, withZqW

being the coupling strength~see also Ref.@23#!. We recall
that the wave vector runs over the system Brillouin zone
the case of the vibronic modes and between the zero
Debye cutoff wave vector in the bath.

Next, following NESOM-based IST, we need to defi
the thermodynamic space for the description of the none
librium macroscopic state of the system, in other words
set of basic variables relevant to the problem at hand: T
are as follows in the present case. First, we take the num
of excitations in each mode, i.e., the operatorn̂qW5aqW

†
aqW .

Second, once the formation of a coherent state of vibro
modes~the solitary wave! is expected, we must introduce th
amplitudesaqW andaqW

† averaged over the nonequilibrium e
semble. Finally, we take the thermal bath as constantly
maining in equilibrium at a temperatureT0 , and then we
introduce its HamiltonianH0B as a basic dynamical variable
Therefore the basic set of chosen microdynamical varia
consists of

$n̂qW ,aqW ,aqW
† ,H0B%. ~3a!

The nonequilibrium statistical operator in NESOM — w
recall that we use Zubarev’s approach and call it%«(t) — is
a superoperator depending on the above-mentioned basi
namical microvariables, and an associated set of Lagra
multipliers ~which constitute the corresponding set of inte
sive variables in IST, which also completely describes
nonequilibrium macroscopic-thermodynamic state of the s
tem! @10,13–17#, which we designate as

$FqW~ t !, f qW~ t !, f qW
* ~ t !,b0%, ~3b!

and in the first part of Appendix A we describe%« .
The set of basic macrovariables is indicated by
n
nd

i-
e
y
er

ic

e-

s

dy-
ge
-
e
s-

$nqW~ t !,^aqW ut&,^aqW
†ut&,EB%, ~4!

that is,

nqW~ t !5Tr $n̂qW%«~ t !%, ~5!

^aqW ut&5Tr $aqW%«~ t !%, ~6!

EB5Tr $H0B%«~ t !%. ~7!

Moreover, EB ~the energy of the thermal bath! is time
independent as isb05(kBT0)21, because of the assumptio
that the bath is constantly kept in equilibrium at tempe
ture T0 . Hence, the whole statistical operator is%«(t)
5%̃«(t)3%B , where now%̃«(t) is Zubarev’s statistical op-
erator of the vibronic system and%B is the canonical statis
tical distribution of the free thermal bath at temperatureT0
~which then plays the role of an ideal reservoir!.

The equations of evolution for the three basic variab
describing the evolution of the vibronic system are derived
the NESOM-based kinetic theory@15–22#. Taking into ac-
count that the anharmonic interaction is weak, we restrict
calculation to the Markovian limit, that is, we consider co
lision integrals only up to second order in the interacti
strength@16,19–21#. We briefly describe in the second pa
of Appendix A the fundamentals of these kinetic equatio
particularly the origin of the collision operators that a
present on the right-hand side of Eq.~8!.

After some lengthy calculation, we find that

d

dt
nqW~ t !5I qW1(

j 51

5

JqW ~ j !
~ t !1zqW~ t !, ~8!

where I qW represents the rate of production ofqW -mode
phonons generated by the external pumping source,

JqW ~1!
~ t !1JqW ~2!

~ t !52tqW
21

@nqW~ t !2nqW
~0!

#, ~9!

with nqW
(0) being theqW -mode population in equilibrium, i.e.

Planck distribution at temperatureT0 , andtqW is a relaxation
time given by
tqW
21

5
4p

\2

1

nqW
~0!(

pW
uVqpW

~1!u2npW
B
nqW 2pW

B
@d~VpW1VqW 2pW2vqW !12eb\VpWd~VpW2VqW 2pW1vqW !#, ~10!

wherenpW
B is the population~Planck distribution! of the phonons in the bath at temperatureT0 , and the other terms are

JqW ~3!
~ t !5

8p

\2 (
qW 8

uVqW qW 8
~2! u2@nqW 2qW 8

B
~nqW 82nqW !2nqW~11nqW 8!#d~VqW 2qW 81vqW 82vqW !, ~11!

JqW ~4!
~ t !5

8p

\2 (
qW 8

uVqW qW 8
~2! u2@nqW 2qW 8

B
~nqW 82nqW !1nqW 8~11nqW !#d~VqW 2qW 82vqW 81vqW !, ~12!

JqW ~5!
~ t !5

8p

\2 (
qW 8

uVqW qW 8
~2! u2@nqW 1qW 8

B
~11nqW 8!2~nqW 82nqW 1qW 8

B
!nqW #d~VqW 1qW 82vqW 82vqW !, ~13!
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and, finally, the termzqW is the one which couples the populations with the amplitudes, namely

zqW~ t !5
z^aqW ut& z2

tqW
1

8p

\2 (
qW 8

uVqW qW 8
~2! u2$ z^aqW ut& z2~11nqW 81nqW 2qW 8

B
!2 z^aqW 8ut& z2~nqW2nqW 2qW 8

B
!%d~VqW 2qW 81vqW 82vqW !

2
8p

\2 (
qW 8

uVqW qW 8
~2! u2$ z^aqW ut& z2~nqW 82nqW 2qW 8

B
!2 z^aqW 8ut& z2~11nqW1nqW 2qW 8

B
!%d~VqW 2qW 82vqW 81vqW !

1
8p

\2 (
qW 8

uVqW qW 8
~2! u2$ z^aqW ut& z2~nqW 82nqW 1qW 8

B
!2 z^aqW 8ut& z2~nqW2nqW 1qW 8

B
!%d~VqW 1qW 82vqW 82vqW !. ~14!

In Eqs. ~11!–~14!, the presence of Dirac’sd function is evident accounting for energy conservation in the anharmo
interaction-generated collisional processes; momentum conservation is taken care of in the energy operators of Eq.~2!. In the
case of acoustical vibrational excitations, the matrix elements of the anharmonic interaction are proportional to the squ
of the three wave numbers involved, typicallyK (1),(2)@ uqW uuqW 8uuqW 2qW 8u#1/2, with indexes 1 or 2 inK corresponding to the matrix
elementsV(1) andV(2), respectively;K (1) can be determined via measurements of bandwidths in scattering experimen
K (2) is left an open parameter.

The equations of evolution for the amplitudes are

]

]t
^aqW ut&52 i ṽqW^aqW ut&2GqW^aqW ut&1GqW^aqW

†ut&* 2 iWqW^aqW
†ut&* 1 (

qW 1qW 2

RqW 1qW 2
^aqW 1

ut&^aqW 2

† ut&~^aqW 2qW 11qW 2
ut&1^a2qW 1qW 12qW 2

† ut&!,

~15!

]

]t
^aqW

†ut&5the complex conjugate of the right-hand side of Eq.~15), ~16!

whereṽqW is the frequency renormalized by the anharmonic interaction, withWqW being a term of renormalization of frequenc
and the lengthy expression forRqW 1qW 2

is given elsewhere@24# ~their detailed expressions are not necessary for our purp

here!. Finally, GqW(t), which has a relevant role in what follows, is the reciprocal of a relaxation time, given by

GqW ~ t !5tqW
21

~ t !1
4p

\2 (
qW 8

uVqW qW 8
~2! u2@11nqW 81nqW 2qW 8

B
#d~VqW 2qW 81vqW 82vqW !2

4p

\2 (
qW 8

uVqW qW 8
~2! u2@nqW 82nqW 2qW 8

B
#d~VqW 2qW 82vqW 81vqW !

1
4p

\2 (
qW 8

uVqW qW 8
~2! u2@nqW 82nqW 1qW 8

B
#d~VqW 1qW 82vqW 82vqW !. ~17!
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Equations~15! and~16! are coupled together, and conta
linear and trilinear terms. They give rise to two types
solutions: one is a superposition of normal vibrations and
other is of Davydov’s soliton type@6,25,26#, as we proceed
to show. First, we neglect the coupling of the amplitu
^aqW ut& and its conjugate, which can be shown to follow wh
the original Hamiltonian is truncated in the so-call
rotating-wave approximation@27#, which can be used in this
case. Next, we introduce the averaged~over the nonequilib-
rium ensemble! field operator

c~x,t !5(
q

^aqW ut&eiqx ~18!

for one-dimensional propagation along thex direction ~the
only one in the case of quasi-one-dimensional polymers
semiconductor quantum wires!. At this point we need to de
fine the dispersion relationvqW : we may consider two cases
namely, optical and acoustical vibrations. The first case
already been considered@28# in the particular case of ace
f
e

r

s

anilide ~in which the CO-stretching polar modes are of th
same type as those in biopolymers, e.g., thea-helix protein!.
It is shown thatDavydov’s soliton-type excitationin the form
of an undeformed wave packet consisting of a coherent s
of CO stretching~or Amide-I! vibration is present. However
it is damped when propagating in the dissipative medium
damping dependent on the thermodynamic state of the
tem, as evidenced in the NESOM-IST calculation. Moreov
a calculation in NESOM-based response function theory
allowed us to derive the infrared absorption spectra@28#,
characterizing the soliton and obtaining an excellent agr
ment with the experimental data of Careriet al. @29#. For
illustration we present in Fig. 1 the infrared spectra in thr
different conditions, namely at temperatures of 20 K, 50
and 80 K.

Let us consider next the case of acoustic vibrations, w
a frequency dispersion relationvqW5suqW u (s being the veloc-
ity of sound in the system!. Using this dispersion relation
and proceeding on the ansatz that a well localized and
tially undeformed solitary-wave-type solution is expecte
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7916 PRE 58MESQUITA, VASCONCELLOS, AND LUZZI
using Eqs.~15! and ~18!, we find ~see Appendix B! that the
field amplitude satisfies the local~space correlations ne
glected, as noticed! equation

i\
]

]t
c~x,t !1

\2

2MS

]2

]x2
c~x,t !1 i\gsc~x,t !

5\Guc~x,t !u2c~x,t !, ~19!

which is formally identical to the one for the optical vibra
tions @28#, where\2/2MS5\sw, with w being the width of
the wave packet~see below! andMS is a pseudomass. This i
a nonlinear Schro¨dinger-type equation with damping@1,30#,
and wheregs andG are the values in the local approximatio
of the transforms ofGqW of Eq. ~17! andRqW 1qW 2

in Eq. ~15! to
direct space~see Ref.@28#!. Equation~19! for the average
field amplitude admits two types of solutions. One is
simple plane wave composed of the superposition of
normal-mode vibrations~corresponding tofirst-sound-like
wavesassociated with the motion of density!. The other is a
Schrödinger-Davydov soliton-type excitation: Let us con-
sider as an initial and boundary condition an impinged sig
with a hyperbolic secant shape, which satisfactorily a
proaches a Gaussian profile. It has an amplitude, sayA,
which defines its energy content, and a momentum cha

FIG. 1. The infrared absorption spectrum of acetanilide in
frequency range of the CO-stretching mode, showing the nor
band and a redshifted one adjudicated to the soliton. After R
@28#: the full line is the calculation in NESOM and the dots a
experimental points taken from Ref.@29#.
e

al
-

c-

terized by a velocity of propagationv. Resorting to the in-
verse scattering method@31# we obtain that the solution o
Eq. ~19! is

c~x,t !5A expH i FMSv
\

x2~vs2 i gs!t2
u

2G J
3sechSAF uGuMS

\ G1/2

~x2vt ! D , ~20!

wheregs is the reciprocal lifetime of the excitation. We use
G5uGueiu and

vs5
uGuA 2

2
2

MSv2

4\
, ~21!

which is an amplitude- and velocity-dependent frequency
We recall that the amplitudeA and the velocityv are

determined by the initial and boundary conditions of exci
tion determined by the perturbing source~the ‘‘exciting an-
tenna array’’!. Davydov’s soliton of Eq.~20! can be inter-
preted as being that the vibrational acoustic modes
localized by means of the nonlinear coupling with the ext
nal bath; the distortion then reacts — also through anh
monic coupling — to trap the oscillations while keeping t
packet undistorted, in a process also referred to as s
trapping@1,7#. Moreover, as noticed, in conditions of excita
tion in near equilibrium with the bath, the solitary wave
damped, relaxing with a lifetimegs

21 . However, the situa-
tion is substantially modified in sufficiently far-from
equilibrium conditions, i.e., for high values of the pumpin
intensity I qW in Eq. ~8!. In this equation it can be noticed tha
JqW (4)

andJqW (5)
contain nonlinear contributions in the popul

tions of the modes. These nonlinear contributions have
remarkable characteristic that whenvqW,vqW 8 there follows a
net transmission of the energy, received from the exter
source, from the modes higher in frequency to those lowe
frequency, in a cascade-down process: This a consequen
the presence of the nonlinear terms~containing the product
nqWnqW 8) in the collision integrals of Eqs.~11!–~13!, which are
present in the equation of evolution for the population
modeqW , viz., Eq.~8!. ForvqW,vqW 8 , the collision integrals of
Eqs.~11! and~13! do not contribute, as a consequence of t
fact that energy conservation in the collisional events~ac-
counted for thed functions! cannot be satisfied. Hence, th
collision integral of Eq.~12! survives, giving rise to the al-
ready mentioned increase of population in modeqW , at the
expense of all the other modesqW 8 having higher frequencies
than vqW . For vqW.vqW 8 , only the collisional integral of Eq.
~15! survives, implying a transmission of energy from mo
q to those with lower frequencies, that is, these nonlin
terms redistribute energy among the modes.

As a consequence, the populations of the modes lowe
frequency~i.e., those around the zone center! are largely in-
creased. Such a phenomenon was predicted by Fro¨hlich al-
most 30 years ago@32#. This so-calledFröhlich effect, in
sufficiently far-from-equilibrium conditions, has a dramat
effect on the propagation of the Davydov soliton describ
above. With increasing populationnqW in the modes lowest in
frequency, the lifetime of these modes of vibration, as giv

e
al
f.
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by the reciprocal of theGqW of Eq. ~17!, is largely increased
Therefore, in the field amplitudec(x,t), as given by Eq.
~18!, after typically a fraction of a picosecond has elaps
after switch-on of the excitation, the amplitudes^aqW ut& for
modes at intermediate to high frequencies in the disper
relation band die down, but those for the modes lowes
frequency~in the neighborhood of the zone center! survive
for long times~their lifetime being larger and larger for in
creasing values of the pump intensity!. We illustrate this
point in Figs. 2 and 3: Consider a sample with the solit
traveling in a given direction along the extensionL of the
sample. Then the permitted vibrational modes are thos
the interval of wave numbersp/L<q<qB , whereqB is the
Brillouin zone-end wave number. We takeL510 cm and
the values for the parameters involved in an order of mag
tude for typical polymers and thermal bath, namelyqB
53.143107 cm21 ~hence the lattice parameter has be
taken asa510 Å!, s.1.83105 cm/s, sB.1.43105 cm/s,
tqW.10 ps for allqW , and from the latter we can estimateK (1)

in the matrix elements, while we keep as an open param
the ratiol5uK (2)u2/uK (1)u2. For these characteristic values
follows that, because of energy and momentum conserva
in the scattering events, the set of equations of evolut
Eqs. ~8!, which in principle couple all modes among them
selves, can be grouped into independent sets, each one
ing nine modes. For example, taking the mode with the lo
est wave numberp/L, the set to which it belongs contain
the modeskn21p/L, wherek5(s1sB)/(s2sB)58 in this
case, andn52,3, . . . ,9. Let uscall n1 , . . . ,n9 the corre-
sponding populations, their frequencies beingv155.63104

FIG. 2. Populations of the three relevant modes in the set—
described in the main text—with increasing values of the inten
of the external source pumping modes labeled 2 and 3 in the u
sonic region.
d

n
n

n

in

i-

n

ter

on
n,

av-
-

Hz, v254.53105 Hz, v353.63106 Hz, v452.93107

Hz, v552.33108 Hz, v651.83109 Hz, v751.531010 Hz,
v851.231011 Hz, andv959.531011 Hz. Moreover, for il-
lustration, the open parameterl is taken equal to 1, and we
consider that only the modes 2 and 3~in the ultrasonic re-
gion! are pumped with the same constant intensityS5I t̄,
whereI 25I 35I , I 1 andI n with n54, . . . ,9 arenull, andt̄ is
a characteristic time used for scaling purposes~as in @22#!,
here equal to 0.17 s. The large enhancement of the pop
tion is evident in the mode lowest in frequency (n1), for
S0.1019, at the expense of the two pumped modesn2 and
n3 , while the modesn4 throughn9 have minor modifications
acquiring populations which are very near that in equilibriu
with the thermal bath at temperatureT0 ; that is, they are
practically unaltered. The emergence of the Fro¨hlich effect is
clearly evidenced for this case of acoustical vibrations:
fact, pumping of the modes in a restricted ultrasonic band~in
the present case in the interval 4.53105 Hz<v<2.8
3107 Hz) leads, at sufficiently high intensity of excitation
to the transmission of the pumped energy in these mode
those with lower frequencies (v,v2), while those with
larger frequencies (v.2.83107 Hz) remain at near equilib-
rium. It may be noticed that for the given value oft̄, S
51019 corresponds to a flux power, provided by the exter
source in the given interval of ultrasound frequencies be
excited, of the order of milliwatts.

The dependence of the lifetime with the level of excit
tion is illustrated in Fig. 3: A large increase of the lifetime

s
y
a-

FIG. 3. The reciprocal of the lifetime of the modes whose pop
lation is shown in Fig. 2.
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7918 PRE 58MESQUITA, VASCONCELLOS, AND LUZZI
shown for the mode lowest in frequency, that is, the recip
cal of the lifetime,G1 , largely decreases.

The Fröhlich effect can be evidenced in an alternati
way. A straightforward calculation in NESOM leads to th
result that, in terms of the intensive nonequilibrium therm
dynamic variables of Eq.~3b!, the population and the ampli
tude are given by

nqW~ t !5@eFqW ~ t !21#211 z^aqW ut& z2, ~22!

^aqW ut&52 f qW~ t !* /FqW~ t !. ~23!

Moreover, the intensive thermodynamic variableFqW can
alternatively be written in either of two forms: One is

FqW~ t !5b0„\vqW2mqW~ t !…, ~24!

introducing a pseudochemical potential per modemqW , usu-
ally referred to as a quasichemical potential, as done
Fröhlich @32# and Landsberg@33# @we recall that b0
5(kBT0)21#. The steady-state values of the quasichem
potential of mode populationsn̄ j , with j 51, 2, and 3, in Fig.
2 versus the intensity of the external source are shown in
4, where it is evident thatm1 approachesv1 for S of the
order of 1019, which results in a near singularity inn̄1 . ~This
phenomenon is sometimes referred to as a kind of none
librium ‘‘Bose-Einstein-like condensation’’ because of th
characteristic of ‘‘piling up’’of excitations in the lowest lev

FIG. 4. The quasichemical potential of the modes labeled 1–
Fig. 2, with mode 1 corresponding to the one with the lowest f
quency in the given set: The emergence of a ‘‘Bose-Einstein-
condensation’’ forS approaching a critical value of the order o
1019 is evident.
-

-

y

l

g.

i-

els of vibronic energy. Also a ‘‘two-fluid-like’’ model may
be considered in a descriptive way, as, in a sense, show
Fig. 5.!

Otherwise, it can be written

FqW~ t !5\vqW /kBTqW
* ~ t !, ~25!

introducing a nonequilibrium pseudotemperature~or qua-
sitemperature! per mode, as used in the physics of the ph
toinjected plasma in semiconductors~e.g., @34–36#!; its de-
pendence on the intensity of the external source is displa
in Fig. 6.

III. FRÖ HLICH-CHERENKOV EFFECT OR X WAVES

Moreover, another novel phenomenon may be expecte
the out-of-equilibrium nonlinear system we are consideri
In both cases of ‘‘optical’’ or ‘‘acoustical’’ Schro¨dinger-
Davydov solitons that we have described, the amplitude
the velocity of propagation are determined by the initial co
dition of excitation. Hence, the velocityv can be either
smaller or larger than the group velocity of the norm
waves. For the polymer acetanilide in the conditions of
experiment of Careriet al. @29#, v is larger than the group
velocity of the phonons of the CO-stretching vibrations@28#.
In the case of acoustic vibrations in bulk, we may havev
.s, leading to the emergence of a kind of Cherenkov-li
effect ~a so-called superluminal effect in the case of char
moving in a dielectric with a velocity larger than the veloci
of light in the medium@37,38#! as we proceed to show. Thi
could be the case in the experiments of Lu and Green

in
-
e

FIG. 5. The population in the steady state for a pumping int
sity S51023 of the modes along the spectrum of frequencies of
acoustic modes. Dots indicate the modes in the first set~the remain-
ing part of the spectrum up to the highest Brillouin frequencyvB

59.531011 Hz has been omitted!.
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@39#; in Fig. 7 we reproduce a related figure@40# showing on
the one side the excitation of a normal sound wave, and
other an apparent~in our interpretation! ‘‘superluminal’’
solitary wave, more aptly called asupersonic solitary wave,
accompanied by a Cherenkov-like large emission
phonons, as described next. Such excitation has been du
an X wave, and interpreted in terms of an undeformed p
gressive wave@40,41#, created by the particular excitatio
provided by the pumping transducer.

FIG. 6. The quasitemperature, defined in Eq.~25!, for the modes
in Fig. 2.
e

f
bed
-

Consider propagation of a soliton with velocityv (.s)
in, say, thex direction in bulk, which introduces a privilege
direction in the system. It can be noticed that according
Eq. ~8! @cf. also Eq.~22!#, the populations of the vibronic
modes increase as a result of the direct excitation provi
by the source with intensityI qW in Eq. ~8!, with, as previously
shown, such pumped energy being concentrated in the m
lowest in frequency~see Figs. 2 and 3!, and as a consequenc
of such a so-called Fro¨hlich effect, the lifetime of the soliton
is largely increased. Moreover, we notice that for the mo
in the Fröhlich condensate it can be estimated thatz^aqW ut& z2
.w2A 2/L2, where we recallA is the amplitude and we
have writtenw for the width of the solitary wave packet. O
the other hand, for the preferentially populated modes w
small qW , using Eqs.~22! and ~24! it follows that

mqW5\sqF12
kBT0

\sq
lnS 11

1

nqW2u^aqW&u2
D G

5\sqF12
kBT0

\sq
FqW G5\vq cosuqW , ~26!

where we have introduced the angleuqW whose cosinus is

cosuqW5
s

vF12
kBT0

\sq
lnS 11

1

nqW2u^aqW&u2
D G

5
s

vF12
T0

TqW
* G[

s

vnqW
, ~27!

after Eq. ~25! is used, andnqW defines a ‘‘pseudorefraction
index’’ introduced simply for giving an expression resem
FIG. 7. Excited normal sound wave~upper figure! and the undistorted progressiveX wave ~lower figure! @40#.
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bling the case of the Cherenkov effect in radiation the
~when nqW is the Planck distribution of photons! @37,38#.
Hence, since

nqW5„exp$b0\sq@12~v/s!cosuqW #%21…211u^aqW&u2

~28!

~whereu^aqW&u2.w2A/L2), then it follows that a large emis
sion of phonons follows when cosuqW approaches the valu
s/v, that is, for TqW

* much larger thanT0 ~cf. Fig. 6! and

which are emitted in the directionqW forming an angleuqW

with the direction of propagation of the supersonic solit
(v.s). Forward and backward symmetrical propagatio
are present because modes6qW are equivalent (mqW depends
on the modulus ofqW ). This is a particular characteristic he
of what in radiation theory are the normal and anomalo
Cherenkov effects in a spatially dispersive medium@38#. As
already noticed, the phenomenon, which we call
Fröhlich-Cherenkov effect, may provide a microscopic inter
pretation of theX waves in experiments of ultrasonograp
@39#, shown in the lower part of Fig. 7@40#. From this figure
we roughly estimate thatu.13°, and thenv/s.1.02, that is,
the velocity of propagation of the ultrasonic soliton is 2
larger than the velocity of sound in the medium, once
admit an excitation strong enough to imply thatTq* @T0 .

TheseX waves have been described in terms of a ma
ematical approach pertaining to the theory of undeform
progressive waves@41,40#. This appears to be a particular
interesting applied mathematical treatment for a pract
handling of the phenomenon, for example in engineering
medical imaging@39,41#, as another applied mathematic
method does for engineering in Refs.@42,43#. The interesting
case of medical imaging is treated in detail elsewhere@44#,
where we use the results presented in this paper.

Summarizing, we have described, resorting to a statist
thermodynamics based on a nonequilibrium ensemble
malism, the solitary waves which arise out of nonlineari
induced coherence of optical and acoustical vibrations
open systems driven away from equilibrium. The result
Schrödinger-Davydov soliton is coupled to the normal vibr
tions, and complex behavior is evidenced in the form of th
relevant phenomena, namely~i! a large increase in the popu
lations of the normal modes lowest in frequency~the so-
called Fröhlich condensation!, ~ii ! an accompanying large
extension of the solitary-wave lifetime~producing a near un
damped soliton!, and~iii ! large emission of phonons in privi
leged directions when the velocity of propagation of the s
ton is larger than the group velocity of the normal vibratio
~or Fröhlich-Cherenkov effect!.

Finally, we call attention to the fact that, in any mater
system, mass and thermal motions are coupled toge
through thermostriction effects~in the case of charged pa
ticles is the thermoelectric effect!. Thermal motion consists
of the so-called second sound propagation, for which
apply all the considerations we have presented here. A
the case of the zero-sound-like excitation in the double p
toinjected plasma in semiconductors~the so-called acoustic
plasmons, with the corresponding first-sound-like excitat
being the optical plasmons! may be added@45,46#. Similarly,
one may consider as candidates for these kinds of phen
y
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ena a large variety of normal-mode vibrations in matter, su
as, e.g., polaritons, plasmaritons, phonoritons, and all kind
excitonic waves propagating in nonlinear media. A particu
case that may eventually prove relevant is the case of
so-called ‘‘excitoner,’’ that is, the stimulated amplification
excitons low in energy~dubbed a kind of Bose condensatio!
and their propagation in the form of a weakly undamp
packet@47,48#. It is analyzed on the basis of the statistic
thermodynamics as described in@49#.
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APPENDIX A: THE STATISTICAL OPERATOR AND THE
EQUATIONS OF EVOLUTION

The nonequilibrium statistical operator in Zubarev’s a
proach~e.g.,@15–17#! is

%«~ t !5expH ln %̄~ t,0!2E
2`

t

dt8 e«~ t82t !
d

dt8
ln %̄~ t8,t82t !J ,

~A1!

where%̄ is the auxiliary~sometimes called ‘‘coarse-grained
or ‘‘instantaneous’’ quasiequilibrium! statistical operator, in
the present case given by

%̄~ t,0!5expH 2f~ t !2(
qW

@FqW~ t !n̂qW1 f qW~ t !aqW

1 f qW
* ~ t !aqW

†
2b0H0B#J , ~A2!

wheref(t) ensures its normalization, and

%̄~ t8,t82t !5expH 2
1

i\
~ t82t !HSJ %̄~ t8,0!

3expH 2
1

i\
~ t82t !HSJ ~A3!

with HS being the Hamiltonian of Eq.~1! excluding the in-
teraction with the external source~i.e., the free system
Hamiltonian in an interaction representation!.

We recall that« is a positive infinitesimal which goes t
zero after the trace operation in the calculation of avera
has been performed. Its presence in the exponential in
duces a so-called fading memory in the formalism, fro
which follows irreversible behavior from an initial conditio
of preparation of the nonequilibrated system@15–17#.

The equations of evolution for the basic macrovariabl
Eqs. ~8!, ~15!, and ~16!, consist in the averaging over th
nonequilibrium ensemble of Heisenberg equations of moti
that is,
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]

]t
nqW~ t !5Tr H 1

i\
@n̂qW ,H#%«~ t !J , ~A4a!

]

]t
^aqW ut&5Tr H 1

i\
@aqW ,H#%«~ t !J , ~A4b!

]

]t
^aqW

†ut&5Tr H 1

i \
@aqW

† ,H#%«~ t !J , ~A4c!

anddEB /dt50 because of the assumption that the system
acoustical vibrations remains constantly in equilibrium w
an ideal thermal reservoir at fixed temperatureT0 .

The right sides of Eqs.~A4a! have a formidable structur
of almost unmanageable proportions. But an appropriate
of handling them is provided by the NESOM-based kine
theory@16–22#. Details are given in these references, wh
it is shown that in general we can write, for example for E
~A4a! and ~A4b!,

d

dt
nqW~ t !5 (

n50

`

V~n!$nqW~ t !ut%, ~A5!

d

dt
^aqW ut&5 (

n50

`

V~n!$^aqW ut&ut%, ~A6!

where theV ’s for n>2 are interpreted as collision operato
f

ay

e
.

corresponding to scattering by 2,3, . . . particles,n is the
order of the interaction strength inH8 present inV (n), and
memory effects are included.

On the other hand, each one of these collision opera
can be rewritten in the form of a series of partial collisio
operators instantaneous in time, and expressed in the for
correlation functions over the auxiliary ensemble charac
ized by the coarse-grained operator%̄(t), that is,

V~n!$nqW ut%5 (
m5n

`

~n!J
~m!$nqW ut%, ~A7!

and similarly for the case of Eq.~A6! ~for details, see@19#!.
Introducing Eq.~A7! in Eq. ~A5!, their right-hand sides con
sist of a double series of partial collision operators. This s
involves extremely complicated calculations, which, ho
ever, are greatly simplified when the Markovian limit
taken @19,50#. We recall that the Markovian approach co
sists of retaining only memoryless-binary-like collisions,
approximation valid in the weak coupling limit@50–52#,
which is maintained in the present case of anharmonic in
actions. The corresponding Markov equations retain only
three lowest-order contributionsV (0), V (1), and (2)J

(2) in
V (2), which are the right-hand sides of Eqs.~8! and~15!. We
notice that in the present case,(2)J

(2) simply reduces to the
golden rule of quantum mechanics averaged over the n
equilibrium ensemble.
er

q.
APPENDIX B: SCHRÖDINGER-DAVYDOV EQUATION, EQ. „19…

In direct space, after the terms that couple the amplitude^aqW& with its conjugate are neglected~which, as noticed in the main
text, is accomplished using the rotating-wave approximation!, Eq. ~15! takes the form

i\
]

]t
c~x,t !52 i(

q
\vqWE dx8

L
eiq~x2x8!c~x8,t !2 i\(

qW
GqWE dx8

L
eiq~x2x8!c~x8,t !

1 (
q1q2

RqW 1qW 2
E dx8

L E dx9

L
eiq1~x2x8!eiq2~x2x9!c~x8,t !c~x9,t !c* ~x,t !, ~B1!

where we recallvqW5sq. Considering the formation of a highly localized packet~the soliton! centered in pointx and with a
Gaussian-like profile with a width, say,w ~fixed by the initial condition of excitation! extending along a certain large numb
of lattice parametera ~i.e., w@a), in Eq. ~A1! we make the expansion

c~x8,t !'c~x,t !2j
]

]x
c~x,t !, ~B2!

wherej5x2x8 is roughly restricted to be smaller or at most of the order ofw. The first term on the right-hand side of E
~A1! is

2 i(
q

suqu E dx8

L
eiq~x2x8!c~x8,t !52

Ls

2p

]

]xE0

p/a

dq E
0

Ldx8

L
@eiq~x2x8!2e2 iq~x2x8!#c~x8,t !

'2
is

p

]

]xE0

p/a

dq E
x2w/2

x1w/2

dj sin~qj!Fc~x,t !2j
]

]x
c~x,t !G

5
is

p

]

]xF Ex2~1/2!w

x1~1/2!wS 12cos
p

a
j D dj

j Gc~x,t !1
is

p F E
x2~1/2!w

x1~1/2!wS 12cos
p

a
j D dj

j G ]

]x
c~x,t !

2
is

p F E
x2~1/2!w

x1~1/2!wS 12cos
p

a
j D djG ]

]x
c~x,t !2

is

p F E
x2~1/2!w

x1~1/2!wS 12cos
p

a
j D djG ]2

]x2
c~x,t !.

~B3!
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But, of the four terms after the last equal sign in Eq.~A3!, the second and third are null, because of the ansatz that a so
would follow, since the derivative at the center of the packet is null. Consider now the last term, which after the integ
are performed becomes

2
isw

p S 12
2a

pw
sin

p

a

w

2
cos

p

a
xD ]2

]x2
c~x,t !. ~B4!

But, we notice that the width of the packet isw@a, and the cosine in Eq.~A4a! has a period 2a, and then it oscillates many
times inw, and with amplitude (2a/pw)!1, and can be neglected. Similarly, the first term becomes proportional to

is

p

c~x!

x22~w/2!2H wF12cosS px

a D cosS pw

2a D G22x sinS px

a D sinS pw

2a D J , ~B5!

where, on the one hand, the oscillatory terms cancel on average, and, on the other hand, the term decays asx22. Consequently,
using these results in Eq.~B1!, after introducing the notation (\sw/p)[\2/(2Ms), and the local approximation in the secon
and third term on the right-hand side of Eq.~B1!, we find Eq.~19!.
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