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Solitons in highly excited matter: Dissipative-thermodynamic and supersonic effects
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Solitary waves — arising out of nonlinearity-induced coherence of optical and acoustical vibrational modes
in dissipative open systenipolymers and bulk mattgr— are described in terms of a statistical thermody-
namics based on a nonequilibrium ensemble formalism. The undistorted progressive wave is coupled to the
normal vibrations, and three relevant phenomena follow in sufficiently away-from-equilibrium condifipns:

A large increase in the populations of the normal modes lowest in frequéincyaccompanied by a large
increase of the solitary-wave lifetime, aiiiid ) emergence of a Cherenkov-like effect, consisting in a large
emission of phonons in privileged directions, when the velocity of propagation of the soliton is larger than the
group velocity of the normal vibrations. Comparison with experiments is presented, which points out to the
corroboration of the theoryS1063-651X98)00412-7

PACS numbgs): 63.70:+h, 05.70.Ln, 63.20.Pw, 87.22¢

. INTRODUCTION persion relationw;; g is a wave vector in reciprocal space
. . _ o running over the Brillouin zone. The vibronic system is
Solitary waves are a particular kind of excitation in con-taken to be in contact with a thermal bath, modeled as a

densed matter, which nowadays are evidenced as ubiquitoggntinuum of acousticlike vibrations, with frequency disper-
and of large relevance in science and technology. Their rolg;

n reIationQ,;sz|§| and a cutoff Debye frequendyp .
as a new concept in applied science was already empha&zg@stem and bath interact via an anharmonic potential, and
by Scottet al.in 1973[1], who discussed the case of severalthe whole Hamiltonian is taken as '
wave systems where the phenomenon may arise. Recently,
solitons have been shown to play a very important role in H=Hg+H,=Hps+Hoz+H,, (1)
three significant areas: conducting polymg2s3], fiber op-
tics in communication engineeririg,5], and as conveyors of where
energy in biological and organic polymdig—8].

We consider here solitary waves arising out of vibronic 1
modes, both optical and acoustical, when in the presence of Hos= E hwqg( ‘aq 2), (2a)
external pumping sources driving the open system arbitrarily
away from equilibrium. We evidence the possibility of the
emergence of a particular complex behavior brought about HOBzz ﬁQ,;(bng;nL%), (2b)
by the nonlinearities present in the kinetic equations which p
govern the evolution of the nonequilibriurtdissipative
macroscopic state of the system. For that purpose we resort, _ ).
to the so-called informational statistical thermodynamics H=2 Zqadq +E Va2, bq +p
(IST for short[9], and see, for example, Refd0-14). IST
is based on a particular nonequilibrium ensemble formalism,

(1)
namely, the nonequilibrium statistical operator method +E V aqlbpb—q1+0+2 V aqlb b—ql P
(NESOM; see, for example, Refl5-17]), and Zubarev's P P
approach is by far the most concise, soundly based, and a T @), T
quite practical ong16,17). Besides providing microscopic +2 Valﬁaqlbpbq 7p+2 Vi.6,26,24,0q, + 6,
foundations to IST, Zubarev's NESOM yields a nonlinear P 192
guantum kinetic theory of a large scofl6—-22, the one we 2 1
used to derive the results we report in what follows. +% Vq & ag,ag,0-q,- q2+ E Vi 0,24, ag,bg,-q,
142
1. FRO HLICH CONDENSATION
AND SCHRODINGER-DAVYDOV SOLITON + 2 q qzaqlaqzbq -a, +He. (20

4192
Let us consider a system which can sustain longitudinal It consists of the energy of the free system and bty
vibrations, optical and acoustic@.g., polar semiconductors, andHgg, respectively, and ifd, are present the interaction
polymers, and biopolymers, etcwith, say, a frequency dis- of the system with an external sour@e mechanism for ex-
citation which pumps energy on the sysderwhich is the
first term on the right, and the anharmonic interaction com-
*Electronic address: sousa@ifi.unicamp.br posed of several contributions, namely those associated with
TURL: http:/www.ifi.unicamp.br-aurea three-particle(phonon$ collisions involving one of the sys-
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tem and two of the batliwe call Vfila), the corresponding {Vd(t)’<a€| t),<ag|t>,EB}, (4)
matrix elementand two of the system and one of the bath _
(we callv%), the associated matrix elemgnMoreover,ag that is,

T ot G : R
(aa) andbg (bﬁ). are, as usual, annlhlllatlc(preatllor) opera- v =Tr{vge. (D)}, (5)
tors of, respectively, normal-mode vibrations in the system
and bath andpg (gog) of excitations in the source, with (aglty=Tr{age.(1)}, (6)
being the coupling strengtfsee also Ref[23]). We recall
that the wave vector runs over the system Brillouin zone in Eg=Tr{Hoge.(1)}. )

the case of the vibronic modes and between the zero and M E. (th f the th | batlis ti
Debye cutoff wave vector in the bath. oreover, Eg (the energy of the thermal baths time

Next, following NESOM-based IST, we need to define Ndependent as iBo=(kgTo) *, because of the assumption

the thermodynamic space for the description of the nonequitat the bath is constantly kept in equilibrium at tempera-
librium macroscopic state of the system, in other words théu[? To. Hence, the er°|e statistical operator @, (t)

set of basic variables relevant to the problem at hand: They @.(t) X g, where nowp,(t) is Zubarev’s statistical op-
are as follows in the present case. First, we take the numbérator of the vibronic system angg is the canonical statis-

of excitations in each mode, i.e., the operafqr: af;aa- tical distribution of the free thermal bath at temperatilige

Second, once the formation of a coherent state of vibroniéWhICh then plays the role of an ideal reseryoir

modes(the solitary wavgis expected, we must introduce the Th? equations of.evolutlon for th_e three basic vapablgs
describing the evolution of the vibronic system are derived in

amplltudes_aa andad averaged over the nonequilibrium en- the NESOM-based kinetic theofl5—22. Taking into ac-
semble. Finally, we take the thermal bath as constantly recount that the anharmonic interaction is weak, we restrict the
maining in equilibrium at a temperaturk,, and then we cajcylation to the Markovian limit, that is, we consider col-
introduce its Hamiltoniar g as a basic dynamical variable. |ision integrals only up to second order in the interaction
Therefore the basic set of chosen microdynamical variablestrength[16,19—21. We briefly describe in the second part
consists of of Appendix A the fundamentals of these kinetic equations,
- t particularly the origin of the collision operators that are
{vq.aq.a5,Hog}- (38 present on the right-hand side of E8).

e - . After some lengthy calculation, we find that
The nonequilibrium statistical operator in NESOM — we

recall that we use Zubarev's approach and callift) — is d 5

a superoperator depending on the above-mentioned basic dy- gt va()=lg+ E Ja(_)(t) +5(1), (8
namical microvariables, and an associated set of Lagrange =1
multipliers (which constitute the corresponding set of inten- i -
sive variables in IST, which also completely describes the/Nere !q represents the rate of production gfmode
nonequilibrium macroscopic-thermodynamic state of the sysPhonons generated by the external pumping source,

tem) [10,13—17, which we designate as . . _ 1o (0)
) Jq(l)(t)+Jq(2)(t)— 75 [vg(t) Vg 1 9)
{Fq(t), fq(t),f> (1), Bo}, (3b) R
a 4 q ° with vfio) being theg-mode population in equilibrium, i.e.,
and in the first part of Appendix A we descrilpe . Planck distribution at temperatufig), and g is a relaxation
The set of basic macrovariables is indicated by time given by
-1 _4m 1 (2. B B Oy e BRSSO (e o
=2 sz Vo l2vove sl 8(Q5+ Q45— wq) +2e#%8(Q5- Q45+ 0g)], (10)

where VS is the populationPlanck distribution of the phonons in the bath at temperatiligg and the other terms are
87 (2) 2r B
Jd<3)(t) :ﬁz |Vdd’| [Vfi*d'( v —vg) — vg(1+vg)]10(Qg- g + 0g — 0g), (12
q

8
Jg.,, (D) =ﬁ2’ |V<(52d)’|2[ ngd'(”d’ —vg) + v (1+ v 18(Qg- g — wg + wg), (12)
q

8
R _ (2) B R N B R .. R R
Jq(s)(t)——ﬁz q§,‘, |Vdd'|2[ Ve, a1+ vg) = (vg—ve, o) vgl8(Qg14 — w5 — 0g), (13
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and, finally, the tern; is the one which couples the populations with the amplitudes, namely

*t—|<ad|t>|2+8772 VE 12 |ad O+ ver + 12 ) —Kag |OP(vg—vE ) 18(Qs o+ wg — wg
{a(t)= . ?Q’ | ddr| {|<aq| A Vg Vq,d,) |<aq’ )l (vg quq/)} (Qg-g t 0g—wg)
q
87 (2 121/ a-1+\2( 1, - _ B SR 2 ... B .. . .
_?Z |Vﬁﬁ’| {|<aq t)| (Vqr—va_a,)—Kaq, ) (1+ vg+ Va_a,)}ﬁ(Qq,q,—qu-wq)
q’
8T /@ 12 a-lr\ (2 B IR B
+?Z |Vaa,| {l(aq|t>| (Vq/_Vd+d,)_|<aq/|t>| (Vq_Va+&,)}5(Qq+q/—(1)q/_wq). (14)
q/

In Egs. (11)—(14), the presence of Dirac'é function is evident accounting for energy conservation in the anharmonic-
interaction-generated collisional processes; momentum conservation is taken care of in the energy operats fi Eop
case of acoustical vibrational excitations, the matrix elements of the anharmonic interaction are proportional to the square roots

of the three wave numbers involved, typically"®|q||q’||a—q’|]*'2 with indexes 1 or 2 ifK corresponding to the matrix
elementsv(® andV(?), respectivelyK®) can be determined via measurements of bandwidths in scattering experiments and
K@) is left an open parameter.

The equations of evolution for the amplitudes are

J -~ t , t t t
E(a&h) = —iwg(agt) —T'g(aqt) + I'q(ag/t)* —iWg(agt)* + qE;, Ra152<aal|t><ad2|t)((a,i,aﬁazh) + <a—d+d1—dz|t>)’
142
(15
a4 _ , .
E(aah):the complex conjugate of the right-hand side of Bd), (16

Where?oa is the frequency renormalized by the anharmonic interaction, Wittbeing a term of renormalization of frequency,
and the lengthy expression fﬂdl&z is given elsewherg24] (their detailed expressions are not necessary for our purposes

herg. Finally, I'g(t), which has a relevant role in what follows, is the reciprocal of a relaxation time, given by

4 4qr
. -1 2 . B .. R R 2) R B .. . R
Iy (t):T& (t)—l——ﬁ2 q; |ng),|2[1+ Vq/—l—vd_a,]ﬁ(Qq,q,—i-wq/—wq)——hz E_, |V%d,|2[vq,—Va_d,]é(ﬂq,q/—wq,—i-wq)
TS VR 2 e 0B 18w wg 1
2 < | qq,| [vgr Vq+q,:| (Qg+q— g — wg). a7

Equationg15) and(16) are coupled together, and contain anilide (in which the co-stretching polar modes are of the
linear and trilinear terms. They give rise to two types ofsame type as those in biopolymers, e.g.,dhleelix proteir).
solutions: one is a superposition of normal vibrations and thét is shown thaDavydov’s soliton-type excitatidn the form
other is of Davydov’s soliton typg6,25,26, as we proceed of an undeformed wave packet consisting of a coherent state
to show. First, we neglect the coupling of the amplitudeof CO stretchingor Amide-I) vibration is present. However,
(aqlt) and its conjugate, which can be shown to follow whenit js damped when propagating in the dissipative medium, a
the original Hamiltonian is truncated in the so-called yamping dependent on the thermodynamic state of the sys-
rotating-wave approximatiof27], which can be used in this (e ‘as evidenced in the NESOM-IST calculation. Moreover,
case. Next, we introduce the averadeuter the nonequilib- 5 caiculation in NESOM-based response function theory has
rium ensemblefield operator allowed us to derive the infrared absorption spe¢d],

characterizing the soliton and obtaining an excellent agree-
z/;(x,t)zZ <aa|t>eiqx (18) ment with the experim_entz_il data of Careti al. [29]. For
q illustration we present in Fig. 1 the infrared spectra in three
different conditions, namely at temperatures of 20 K, 50 K,
for one-dimensional propagation along tkedirection (the  and 80 K.
only one in the case of quasi-one-dimensional polymers or Let us consider next the case of acoustic vibrations, with
semiconductor quantum wiredAt this point we need to de- a frequency dispersion relatio%=s|(j| (s being the veloc-
fine the dispersion relationg: we may consider two cases, ity of sound in the systein Using this dispersion relation,
namely, optical and acoustical vibrations. The first case hagnd proceeding on the ansatz that a well localized and spa-
already been considerg¢@8] in the particular case of acet- tially undeformed solitary-wave-type solution is expected,
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terized by a velocity of propagation. Resorting to the in-
verse scattering methd®1] we obtain that the solution of

Eqg. (19 is
. Msl) ) (%

Pp(x,t)y=Aexp i TX—(wS—I 75)t_§
— |GIMg]M2
© X sech A (x—=vt) |, (20
c h
g
A wherey; is the reciprocal lifetime of the excitation. We used
W G=|Gle'’ and
p=d
<€
o _[GlA? Mg? o1
5 W= = s (21)
a
<

0.0-::':::':::' L. . .
which is an amplitude- and velocity-dependent frequency.

We recall that the amplitudel and the velocityv are
determined by the initial and boundary conditions of excita-
tion determined by the perturbing sourithe “exciting an-
tenna array’]. Davydov’s soliton of Eq(20) can be inter-
preted as being that the vibrational acoustic modes are
localized by means of the nonlinear coupling with the exter-
L nal bath; the distortion then reacts — also through anhar-
1670 1660 1650 monic coupling — to trap the oscillations while keeping the
packet undistorted, in a process also referred to as self-
trapping[1,7]. Moreover, as noticed, in conditions of excita-

FIG. 1. The infrared absorption spectrum of acetanilide in thetion in near equilibrium with the bath, the solitary wave is

frequency range of the CO-stretching mode, showing the normaflamped, relaxing with a lifetimey '. However, the situa-

band and a redshifted one adjudicated to the soliton. After Reftion is substantially modified in sufficiently far-from-
[28]: the full line is the calculation in NESOM and the dots are €quilibrium conditions, i.e., for high values of the pumping
experimental points taken from R¢R9]. intensityl g in Eqg. (8). In this equation it can be noticed that

J&(4) andJa(S) contain nonlinear contributions in the popula-

using Egs(15) and (18), we find (see Appendix Bthat the tions of the modes. These nonlinear contributions have the

field amplitude satisfies the locdbpace correlations ne- remarkable characteristic that wheg< wg: there follows a
glected, as noticadequation net transmission of the energy, received from the external

source, from the modes higher in frequency to those lower in
frequency, in a cascade-down process: This a consequence of

ool o L

FREQUENCY (cm™)

P 2 g2 the presence of the nonlinear terg@®ntaining the product
ihﬁz//(x,t)nL M- — PO Fifiysp(x,1) vavgr) in_the collision_integrals of E_qs{ll)—(lS), which are
S JX present in the equation of evolution for the population in
=1 G| (X, 1) |2, 1), (19) modeq, viz., Eq.(8). For wg<wg: , the collision integrals of

Egs.(11) and(13) do not contribute, as a consequence of the

fact that energy conservation in the collisional evefats-
which is formally identical to the one for the optical vibra- counted for thes functiong cannot be satisfied. Hence, the
tions[28], where#i2/2M g=#%sw, with w being the width of collision integral of Eq.12) survives, giving rise to the al-
the wave packefsee belowandMg is a pseudomass. This is ready mentioned increase of population in mageat the
a nonlinear Schidinger-type equation with dampirid,30,  expense of all the other modgé having higher frequencies
and whereys andG are the values in the local approximation than w;. For wg>wg:, only the collisional integral of Eq.
of the transforms of'g of Eq. (17) andR 4, in Eq. (19 to  (15) survives, implying a transmission of energy from mode
direct spacesee Ref[28]). Equation(19) for the average ¢ to those with lower frequencies, that is, these nonlinear
field amplitude admits two types of solutions. One is aterms redistribute energy among the modes.
simple plane wave composed of the superposition of the As a consequence, the populations of the modes lowest in
normal-mode vibrationgcorresponding tofirst-sound-like  frequency(i.e., those around the zone centare largely in-
wavesassociated with the motion of densityrhe other is a creased. Such a phenomenon was predicted bigliEhoal-
Schralinger-Davydov soliton-type excitatioihet us con- most 30 years agp32]. This so-calledFrohlich effect in
sider as an initial and boundary condition an impinged signasufficiently far-from-equilibrium conditions, has a dramatic
with a hyperbolic secant shape, which satisfactorily ap-effect on the propagation of the Davydov soliton described
proaches a Gaussian profile. It has an amplitude, sy, above. With increasing populatiar, in the modes lowest in
which defines its energy content, and a momentum charadrequency, the lifetime of these modes of vibration, as given
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FIG. 2. Populations of the three relevant modes in the set—as
described in the main text—with increasing values of the intensity
of the external source pumping modes labeled 2 and 3 in the ultra-

sonic region.

by the reciprocal of thé'; of Eq. (17), is largely increased.

Therefore, in the field amplitude(x,t), as given by Eg.

(18), after typically a fraction of a picosecond has elapse
after switch-on of the excitation, the amplitudéss|t) for

modes at intermediate to high frequencies in the dispersio
relation band die down, but those for the modes lowest i
frequency(in the neighborhood of the zone centsurvive

for long times(their lifetime being larger and larger for in- 9!
creasing values of the pump intengityVe illustrate this
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FIG. 3. The reciprocal of the lifetime of the modes whose popu-

lation is shown in Fig. 2.

4

Z, w,=45x10° Hz, 03=3.6X10° Hz, w,=2.9x10
Z, w5=2.3x 10° Hz, ws=1.8x10° Hz, w;=1.5x 10'° Hz,

g=1.2x 10" Hz, andwg=9.5x 10'* Hz. Moreover, for il-

ustration, the open parameteris taken equal to 1, and we
consider that only the modes 2 and(i the ultrasonic re-

on) are pumped with the same constant inten§ty|?,
wherel,=15=1, I, andl, with n=4,...,9 arenull, andr is

point in Figs. 2 and 3: Consider a sample with the solitona characteristic time used for scaling purpoé&es in[22)),

traveling in a given direction along the extensibrof the

here equal to 0.17 s. The large enhancement of the popula-

sample. Then the permitted vibrational modes are those ition is evident in the mode lowest in frequency,), for

the interval of wave numbers/L<q<qg, whereqg is the
Brillouin zone-end wave number. We take=10 cm and

Sp=10%, at the expense of the two pumped modgsand
v3, while the modes, throughwvg have minor modifications

the values for the parameters involved in an order of magniacquiring populations which are very near that in equilibrium

tude for typical polymers and thermal bath, namejy

with the thermal bath at temperatuiig; that is, they are

=3.14x10" cm™! (hence the lattice parameter has beenpractically unaltered. The emergence of théHfiah effect is

taken asa=10 A), s=1.8x10° cm/s, sg=1.4x10° cm/s,
73=10 ps for allg, and from the latter we can estima¢é")

clearly evidenced for this case of acoustical vibrations: In
fact, pumping of the modes in a restricted ultrasonic b@md

in the matrix elements, while we keep as an open parametéfe present case in the interval %50° Hz<w<2.8

the ratiox = |K@|2/|K)|2. For these characteristic values it X 10" Hz) leads, at sufficiently high intensity of excitation,
follows that, because of energy and momentum conservatiol® the transmission of the pumped energy in these modes to
in the scattering events, the set of equations of evolutionthose with lower frequencieso(< w,), while those with
Egs. (8), which in principle couple all modes among them- larger frequenciesd>2.8x 10" Hz) remain at near equilib-
selves, can be grouped into independent sets, each one haium. It may be noticed that for the given value of S

ing nine modes. For example, taking the mode with the low-=10'° corresponds to a flux power, provided by the external
est wave numbetr/L, the set to which it belongs contains source in the given interval of ultrasound frequencies being

the modes«" 17/L, wherex=(s+sg)/(s—sg)=8 in this
case, andn=2,3,...,9. Let uscall vq,..
sponding populations, their frequencies being=5.6x 10*

.,vg the corre-

excited, of the order of milliwatts.

The dependence of the lifetime with the level of excita-

tion is illustrated in Fig. 3: A large increase of the lifetime is
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FIG. 5. The population in the steady state for a pumping inten-

FIG. 4. The quasichemical potential of the modes labeled 13 irsity S= 107 of the modes along the spectrum of frequencies of the
Fig. 2, with mode 1 corresponding to the one with the lowest fre-acoustic modes. Dots indicate the modes in the firsttetremain-
qguency in the given set: The emergence of a “Bose-Einstein-likeng part of the spectrum up to the highest Brillouin frequeiagy
condensation” forS approaching a critical value of the order of =9.5x10' Hz has been omittgd
10 is evident.

els of vibronic energy. Also a “two-fluid-like” model may
shown for the mode lowest in frequency, that is, the reciprobe considered in a descriptive way, as, in a sense, shown in
cal of the lifetime,I';, largely decreases. Fig. 5)

The Frdlich effect can be evidenced in an alternative  Otherwise, it can be written

way. A straightforward calculation in NESOM leads to the

result that, in terms of the intensive nonequilibrium thermo- Fa(t)=ﬁwa/kBT§(t), (25
dynamic variables of Eq3b), the population and the ampli-
tude are given by introducing a nonequilibrium pseudotemperatoe qua-
sitemperatureper mode, as used in the physics of the pho-
Vq(t)z[eFd(‘)—l]*lJr|<aq|t)|2, (22)  toinjected plasma in semiconductdesg.,[34-36); its de-
pendence on the intensity of the external source is displayed
(aglty=—fa(O)* IF5(1). (23 MFo-6

. . . . lll. FRO HLICH-CHERENKOV EFFECT OR X WAVES
Moreover, the intensive thermodynamic variablg can

alternatively be written in either of two forms: One is Moreover, another novel phenomenon may be expected in
the out-of-equilibrium nonlinear system we are considering.
Fa(t)=Bolhwg— ug(t)), (24) In both cases of “optical” or “acoustical” Schminger-

Davydov solitons that we have described, the amplitude and
the velocity of propagation are determined by the initial con-
dition of excitation. Hence, the velocity can be either

J ¥maller or larger than the group velocity of the normal
Fronlich [32] and Landsberg[33] [we recall that B, aves. For the polymer acetanilide in the conditions of the

=(kgTo) '] The steady-state values of the quasichemica xperiment of Carerét al. [29], v is larger than the group
potential of mode populationg , with j=1, 2, and 3, in Fig.  velocity of the phonons of the CO-stretching vibrati¢as].

2 versus the intensity of the external source are shown in Fign the case of acoustic vibrations in bulk, we may have

4, where it is evident that; approachesy; for Sof the  >s |eading to the emergence of a kind of Cherenkov-like
order of 16° which results in a near singularity in . (This  effect(a so-called superluminal effect in the case of charges
phenomenon is sometimes referred to as a kind of nonequimoving in a dielectric with a velocity larger than the velocity
librium “Bose-Einstein-like condensation” because of the of light in the medium 37,38)) as we proceed to show. This
characteristic of “piling up”of excitations in the lowest lev- could be the case in the experiments of Lu and Greenleaf

introducing a pseudochemical potential per madg usu-
ally referred to as a quasichemical potential, as done b
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Consider propagation of a soliton with velocity (>s)
in, say, thex direction in bulk, which introduces a privileged
direction in the system. It can be noticed that according to
Eq. (8) [cf. also Eq.(22)], the populations of the vibronic
modes increase as a result of the direct excitation provided
by the source with intensitly; in Eq. (8), with, as previously
shown, such pumped energy being concentrated in the modes
lowest in frequencysee Figs. 2 and)3and as a consequence
of such a so-called Fhiich effect, the lifetime of the soliton
is largely increased. Moreover, we notice that for the modes
in the Frdilich condensate it can be estimated tifa]|t)[*
=w2A4?/L2, where we recalld is the amplitude and we
have writtenw for the width of the solitary wave packet. On
the other hand, for the preferentially populated modes with

smalld, using Eqgs(22) and(24) it follows that

P D LT
pg=hsq 1-——In| 1+ ————
hsq vi—Kagl?
g e kBTO - -
{138 TP R R PUTTH PRFEETY R By [ =fsq 1_;L_Fq =fhuvqcosly, (26)
10" 10" 107 107 102 102 Sq

SOURCE INTENSITY (S)

FIG. 6. The quasitemperature, defined in &%), for the modes

where we have introduced the anglg whose cosinus is

in Fig. 2.
s kgTo 1
[39]; in Fig. 7 we reproduce a related fig#0] showing on COSGQ:E 1= fisq In( 1+ pee |<a')|2>]
the one side the excitation of a normal sound wave, and the ) a a
other an apparentin our interpretation “superluminal”
solitary wave, more aptly called supersonic solitary wave s/ To S
accompanied by a Cherenkov-like large emission of =—1l-—=—, (27)
phonons, as described next. Such excitation has been dubbed vl Ta vhNg

an X wave, and interpreted in terms of an undeformed pro-

gressive waveg40,41], created by the particular excitation after Eq.(25) is used, anch; defines a “pseudorefraction

provided by the pumping transducer.

¥,
Transducer

index” introduced simply for giving an expression resem-

Top: Single Element Wave. Bottom: X Wave.

FIG. 7. Excited normal sound wavepper figur¢ and the undistorted progressiXewave (lower figure [40].
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bling the case of the Cherenkov effect in radiation theoryena a large variety of normal-mode vibrations in matter, such
(when vg is the Planck distribution of photong37,38|. as, e.g., polaritons, plasmaritons, phonoritons, and all kind of
Hence, since excitonic waves propagating in nonlinear media. A particular

case that may eventually prove relevant is the case of the
2 so-called “excitoner,” that is, the stimulated amplification of
excitons low in energydubbed a kind of Bose condensation
and their propagation in the form of a weakly undamped
packet[47,48. It is analyzed on the basis of the statistical
thermodynamics as described[#8].

v= (exp{Bofisd 1—(v/s)cohs]} — 1)~ 1+ [(ag)

(where|(ag)|?=w2.A/L?), then it follows that a large emis-
sion of phonons follows when cég approaches the value

slv, that is, for T* much larger tharT, (cf. Fig. 6 and
_ a9 R _ ACKNOWLEDGMENTS
which are emitted in the directiog forming an angledg

with the direction of propagation of the supersonic soliton We acknowledge financial support provided to our group,
(v>s). Forward and backward symmetrical propagationgh different forms, by th_e§aPaqu State Research Founda-
are present because modesj are equivalent g depends 0N (FAPESR, the National Research Coun¢CNPg), the
on the modulus off). This is a particular characteristic here Ministry of Planning(Finep), Unicamp FoundatiotFAEP),

of what in radiation theory are the normal and anomalou
Cherenkov effects in a spatially dispersive medil88]. As
already noticed, the phenomenon, which we call th
Frohlich-Cherenkov effectnay provide a microscopic inter-
pretation of theX waves in experiments of ultrasonography APPENDIX A: THE STATISTICAL OPERATOR AND THE
[39], shown in the lower part of Fig. [40]. From this figure EQUATIONS OF EVOLUTION
we roughly estimate that=13°, and thew/s=1.02, that i, The nonequilibrium statistical operator in Zubarev's ap-
the velocity of propagation of the ultrasonic soliton is 2% proach(e.g.,[15-17) is
larger than the velocity of sound in the medium, once we
admit an excitation strong enough to imply tH'§>TO. _ t ) d _
TheseX waves have been described in terms of a mathQE(t)=eXP{ In Q(t,O)—J dt’ est ‘”—,In Q(t’,t’—t)},
ematical approach pertaining to the theory of undeformed o dt
progressive wavelt1,40. This appears to be a particularly (A1)
interesting applied mathematical treatment for a practical —. . _ . N
handling of the phenomenon, for example in engineering foyvhsreg Is the aux!!lary(sqmet_me_s calleq _coarse-grame_d
medical imaging[39,41], as another applied mathematical or “instantaneous _qua5|eqU|I|br|u)nstat|st|cal operator, in
method does for engineering in Refd2,43. The interesting the present case given by
case of medical imaging is treated in detail elsewhd#, o A
where we use the results presented in this paper. o Q(t,o):exp{ — ¢(t>—Z [Fa(t)vgtTfa(t)ag
Summarizing, we have described, resorting to a statistical q
thermodynamics based on a nonequilibrium ensemble for-
malism, the solitary waves which arise out of nonlinearity- +iX(Hat—BoHos] !, (A2)
induced coherence of optical and acoustical vibrations in 4 q
open systems driven away from equilibrium. The resulting
Schralinger-Davydov soliton is coupled to the normal vibra- where ¢(t) ensures its normalization, and
tions, and complex behavior is evidenced in the form of three L
relevant phenomena, namély a large increase in the popu- — , — .,
lations of the normal modes lowest in frequengle so- e(t’.t —t)=exp( _E(t _t)HS]Q(t 0)
called Frdnlich condensation (i) an accompanying large
extension of the solitary-wave lifetim@roducing a near un- v exp{ _ i(t’ “OH ]
damped solitop and(iii ) large emission of phonons in privi- if S
leged directions when the velocity of propagation of the soli-
ton is larger than the group velocity of the normal vibrationswith Hg being the Hamiltonian of Eq1) excluding the in-
(or Frahlich-Cherenkov effegt teraction with the external sourc@.e., the free system
Finally, we call attention to the fact that, in any material Hamiltonian in an interaction representation
system, mass and thermal motions are coupled together We recall thate is a positive infinitesimal which goes to
through thermostriction effectdn the case of charged par- zero after the trace operation in the calculation of averages
ticles is the thermoelectric effgctThermal motion consists has been performed. Its presence in the exponential intro-
of the so-called second sound propagation, for which weluces a so-called fading memory in the formalism, from
apply all the considerations we have presented here. Alsayhich follows irreversible behavior from an initial condition
the case of the zero-sound-like excitation in the double phoef preparation of the nonequilibrated syst€hs—17.
toinjected plasma in semiconductdibe so-called acoustic The equations of evolution for the basic macrovariables,
plasmons, with the corresponding first-sound-like excitatiorEgs. (8), (15), and (16), consist in the averaging over the
being the optical plasmohsnay be addef45,46. Similarly,  nonequilibrium ensemble of Heisenberg equations of motion,
one may consider as candidates for these kinds of phenonthat is,

IBM Brazil, the National Science Foundatidity.S.—Latin
American Cooperation, Washingtorand the John Simon
eGuggenheim Memorial FoundatigiN.Y.).

(A3)
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1

R corresponding to scattering by 2,3. particles,n is the
vg(O=Tr | [vg.H]e.(),

(A4a)  order of the interaction strength i’ present inQ(™, and
memory effects are included.
On the other hand, each one of these collision operators
(aq|t> Tr [ [ag.H]e. (t)] (Adb)  can be rewritten in the form of a series of partial collision
operators instantaneous in time, and expressed in the form of

3 1 correlation functions over the auxiliary ensemble character-
E(aat):Tr (m[ag,H]gs(t)], (A4c) ized by the coarse-grained operagt), that is,

anddEg/dt=0 because of the assumption that the system of Q(“>{Vd|t}: 2 (n)3<m>{,,a|t}, (A7)
acoustical vibrations remains constantly in equilibrium with m=n
an ideal thermal reservoir at fixed temperatiige

The right sides of Eq9A4a) have a formidable structure
of almost unmanageable proportions. But an appropriate w.
of handling them is provided by the NESOM-based kinetic
theory[16—27. Details are given in these references, where
it is shown that in general we can write, for example for Eqs
(Ad4a) and(A4b),

and similarly for the case of E4A6) (for details, se¢19]).

Introducing Eq.(A7) in Eq. (A5), their right-hand sides con-
st of a double series of partial collision operators. This still
Cinvolves extremely complicated calculations, which, how-
Cever, are greatly simplified when the Markovian limit is
taken[19,50. We recall that the Markovian approach con-
sists of retaining only memoryless-binary-like collisions, an
d approximation valid in the weak coupling lim[t50-52,
—v(t)= > Q(n){yd(t)lt}, (A5)  Which is maintained in the present case of anharmonic inter-

t n= actions. The corresponding Markov equations retain only the
three lowest-order contribution@®, Q®, and (3@ in
Q®) which are the right-hand sides of EG8) and(15) We
notice that in the present casg, J® simply reduces to the
golden rule of quantum mechanics averaged over the non-
where the()'s for n=2 are interpreted as collision operators equilibrium ensemble.

(AB)

d
dt

APPENDIX B: SCHRODINGER-DAVYDOV EQUATION, EQ. (19

In direct space, after the terms that couple the amplitagie with its conjugate are neglectéarhich, as noticed in the main
text, is accomplished using the rotating-wave approximatibg. (15) takes the form

d dx’ . , dx’ . ,
ihﬁzp(x,t)=—i§ ﬁwaf €T D= ih Y raf €I px )
q

dx' [ dx’ . S y
+ 2 Rig, f T f eV YK Dy (1), (BD)

d192

where we recallwg=sg. Considering the formation of a highly localized packiéle solitor) centered in poink and with a
Gaussian-like profile with a width, saw (fixed by the initial condition of excitationextending along a certain large number
of lattice parametea (i.e., w>a), in Eq. (A1) we make the expansion

d
PO = g0 = € h(x,0), (B2)

whereé=x—x" is roughly restricted to be smaller or at most of the ordewof he first term on the right-hand side of Eq.
(A1) is

=2 sl f %ei“”w(x’,t)——zg dg f e e a0y )
is 9 (mla X+ w/2 J
~= s dqfx_wlzdgsin(qa YOG = € Px)
is o[ (x+@2w is[ [x+@Rw T \dé&]a
= fx_(m)w(l cos—g) z P(X, 1)+ — fx_(mw(l—cosag ? P(X,t)
is[ [x+(1/2w is[ [x+(12w o 52
- fx—(l/Z)w(l cos—g dg zp(x t)—; L_(M)W(l—cosag) dé Ezﬂ(x,t).

(B3)
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But, of the four terms after the last equal sign in E&3), the second and third are null, because of the ansatz that a soliton
would follow, since the derivative at the center of the packet is null. Consider now the last term, which after the integrations
are performed becomes

isw1 2a 7w 7w | . B4
— —{ 1— ——=sin— =c0s—X | — #(X,t).
gy 2% 2 h(x,t) (B4)

T az2

But, we notice that the width of the packetis>a, and the cosine in E§A4a) has a period &, and then it oscillates many
times inw, and with amplitude (8/7w) <1, and can be neglected. Similarly, the first term becomes proportional to

X W
1- cos( — cos( —)
a 2a

where, on the one hand, the oscillatory terms cancel on average, and, on the other hand, the term xietag@oasequently,
using these results in E(B1), after introducing the notatiorisw/ 7)=%2/(2M,), and the local approximation in the second
and third term on the right-hand side of E&1), we find Eq.(19).

m™W

2a

- 7TX -
—2X sm( —) sin|
a

s w0 f,

T X2 —(W/2)?

] : (B5)
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